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Abstract

A new structural model for a heterogeneous material with multiple continuous phases is proposed. The corresponding equation for
effective thermal conductivity was derived using three methods. The new model is substantially different from the conventional five fun-
damental structural models (Series, Parallel, two forms of Maxwell–Eucken, Effective Medium Theory). The model has two applications.
First, as a new fundamental structural model to produce composite models using the combinatory rules previously proposed by J.F.
Wang, J.K. Carson, M.F. North, D. J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous mate-
rials, International Journal of Heat and Mass Transfer, 49 (17–18) (2006) 3075–3083. Second, to narrow the bounds of the effective ther-
mal conductivity for heterogeneous materials where the physical structure can be characterised into general classes.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heterogeneous or composite solid materials are widely
used in heat transfer processes and thermal management
equipment. Effective thermal conductivity is one of the
key thermophysical properties used for quantifying the
thermal behaviour of heterogeneous materials. Carson
[1,2] reviewed the relevant modelling approaches. A heter-
ogeneous material’s effective thermal conductivity is
strongly affected by its composition and structure. For
materials with simple physical structures, the effective ther-
mal conductivity can be modelled using existing fundamen-
tal structural models like those given in Table 1 (for
two-phase materials). However, for some materials with
complicated physical structures, these basic models are
not appropriate. An alternative method is to use empirical
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models which are generally obtained by modifying simple
models such as those listed in Table 1. Another common
way of estimating effective thermal conductivity for hetero-
geneous materials with known microstructures is to make
rigorous numerical simulations using the finite difference
method, the finite element method, or other numerical
techniques [3–5]. However, analytical models are preferred
over numerical models in many applications due to their
physical basis, rapid and low cost of calculation, and rea-
sonable accuracy even when microstructure is uncertain.
Recently, Wang et al. [6] proposed a new procedure for
modelling complex materials as composites of five basic
structural models (Series, Parallel, two forms of Max-
well–Eucken, Effective Medium Theory) using simple com-
binatory rules. The advantage of this method is that 26 new
‘composite’ models can be produced from these five basic
models and each has a distinct physical basis. But this
method is limited to the number of the basic struc-
tural models used for combination. In other words, the
basic models adopted must include all of the heterogeneous
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Nomenclature

A,B,C different phases/components constituting a
material

BN boron nitride
c1,c2 constants in Eq. (19)
CC co-continuous model
EG ethylene glycol
EMT effective medium theory
f volume fraction of a phase
H temperature gradient (K m�1)
k thermal conductivity of a phase (W m�1 K�1)
K effective thermal conductivity of a heteroge-

neous material (W m�1 K�1)
ME1 Maxwell–Eucken model with the first phase as

the continuous phase
ME2 Maxwell–Eucken model with the second phase

as the continuous phase
N number of phases
P depolarisation factor
PB polybenzoxazine

PS polystyrene
q heat flux (W m�2)
r radial distance (m)
R radius of sphere (m)
SS stainless steel
v volume fraction of a phase

Greek symbols

/ elevation direction
h azimuthal direction

Subscripts

c continuous phase
e effective
i ith phase
j jth principal axis
p parallel model
s series model
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material’s basic structures that can contribute to the overall
physical structure and behaviour of the material.

Both the authors’ previous work [1,2,6] and several
other studies [11–14] on effective thermal conductivity have
demonstrated the importance of these five fundamental
structural models on theoretical analyses and for develop-
ing more complex theoretical and empirical models. In par-
ticular, an important analysis is to define thermal
conductivity bounds for certain classes of physical struc-
ture. Of the five fundamental structural models shown in
Table 1, the series and parallel models represent a laminate
(layered) structure of the phases. The other three models,
two forms of ME (Maxwell–Eucken) [7,8] and EMT (Effec-
tive Media Theory)[9,10], are based on the phases being
continuous and/or dispersed: the ME model represents
one continuous phase and one or more dispersed phases,
and EMT by all phases being mutually dispersed. The
authors conjecture the existence of a new fundamental
model that is characterised by all phases being continuous.
This paper will derive a co-continuous structural model
using three techniques, and will show its application for
improving the prediction of effective thermal conductivity
of heterogeneous materials.
2. Derivations of co-continuous structural model

2.1. Mathematical deduction

Brailsford and Major [12] proposed a procedure for
mathematically deriving the EMT model by using the
ME model for an isotropic material with two dispersed
phases and one continuous phase. Taking a similar
approach, we assume an isotropic material with two con-
tinuous phases A and B and one dispersed phase C. As
shown in Fig. 1, the dispersed phase C is assumed to be
split between the two continuous phases with a volume
fraction fc dispersed in phase A and a volume fraction
(1 � fc) dispersed in phase B. Using the ME model, the
effective thermal conductivity of the two sub-assemblies
can be expressed by:

Ke1 ¼
kAvA þ kcfcvc

3kA

2kAþkc

vA þ fcvc
3kA

2kAþkc

ð1Þ

Ke2 ¼
kvvB þ kcð1� fcÞvc

3kB

2kBþkc

vB þ ð1� fcÞvc
3kB

2kBþkc

ð2Þ

Assuming a value of fc so that the effective thermal conduc-
tivity of the overall material and the sub-assemblies are
identical means that:

Ke ¼ Ke1 ¼ Ke2 ð3Þ
Also, the summation of the volume fractions for the three
phases is:

vA þ vB þ vC ¼ 1 ð4Þ
Solving Eqs. (1)–(4) gives:

Ke ¼
kAvA

3kB

2kBþkc
þ kBvB

3kA

2kAþkc
þ kCvC

3kA

2kAþkc

3kB

2kBþkc

vA
3kB

2kBþkc
þ vB

3kA

2kAþkc
þ vC

3kA

2kAþkc

3kB

2kBþkc

ð5Þ

which can be rewritten as:

Ke ¼
kAvA

2kAþkC

3kA
þ kBvB

2kBþkC

3kB
þ kCvC

vA
2kAþkC

3kA
þ vB

2kBþkC

3kB
þ vC

ð6Þ

Eqs. (5) or (6) gives the effective thermal conductivity of a
three-phase material assuming phase C is dispersed. Phase



Table 1
The five fundamental structural effective thermal conductivity models for two phase materials

Model Structure schematic Effective thermal conductivity equation Ref.

Parallel model K = v1k1 + v2k2

Maxwell–Eucken 1 (ME1)
(k1 = continuous phase, k2 = dispersed phase)

K ¼
k1v1 þ k2v2

3k1

2k1 þ k2

v1 þ v2
3k1

2k1 þ k2

[7,8]

EMT model v1
k1 � K
k1 þ 2K

þ v2
k2 � K
k2 þ 2K

¼ 0 [9,10]

Maxwell–Eucken 2 (ME2)
(k1 = dispersed phase, k2 = continuous phase)

K ¼
k2v2 þ k1v1

3k2

2k2 þ k1

v2 þ v1
3k2

2k2 þ k1

[7,8]

Series model K ¼ 1

v1=k1 þ v2=k2

A

B

C

A

C

B

C

va vb vc va fcvc vb   (1-fc)vc

Ke = Ke1 = Ke2 

= +

Fig. 1. A structural model with two continuous phases (A and B) and one
dispersed phase (C).
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C can be eliminated leaving a material comprising co-con-
tinuous phases A and B by assuming that phase C has a
thermal conductivity equal to the average value of the con-
ductivity of the two-phase structure comprising A and B
only. Mathematically, this is achieved by setting kc = Ke

and vc = 0 in Eq. (6) and solving for Ke giving:

vA

ðkA � KeÞð2kA þ KeÞ
kA

þ vB

ðkB � KeÞð2kB þ KeÞ
kB

¼ 0 ð7Þ

For a material with N co-continuous phases, a similar pro-
cess can be used to derive the general model expression:

XN

i¼1

vi
ðki � KeÞð2ki þ KeÞ

ki
¼ 0 ð8Þ

Eq. (8) can be further rewritten using the series and parallel
models for a N-phase material giving:
Ke ¼
Ks

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Kp=Ks

q
� 1

� �
ð9Þ

where:

Ks ¼
1PN
i¼1

vi
ki

ð10Þ

Kp ¼
XN

i¼1

kivi ð11Þ

From Eq. (9), we can see that the effective thermal conduc-
tivity of a material with co-continuous phases has a simple
model solution dependent only on the series and parallel
model values.

2.2. Thermal field method

A more physically rigorous method to derive the co-con-
tinuous structural model is to use the thermal field method
[15]. Consider an anisotropic spherical inclusion inserted
into an isotropic material with effective thermal conductiv-
ity, Ke, subjected to a uniform temperature gradient H as
shown in Fig. 2a. The internal structure of the spherical
inclusion is shown in Fig. 2b. It is composed of layers of
the phases of the material in the inclusion. The laminate
geometry means that each of the phases in the inclusion
forms a co-continuous phase. The spherical shape also
means that the effective thermal conductivities of the lam-
inate spherical inclusion in the radial (r), azimuthal (h)



Fig. 2. A single spherical inclusion dispersed in an infinite medium with
heat transfer in one direction: (a) thermal field, (b) elementary unit and (c)
unit structure.
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and elevation (/) directions are Ks, Kp, Kp respectively (i.e.
either series or parallel structures of the phases). In an iso-
tropic material, the temperature is given by:

T ¼ H � r cos / ð12Þ

To guarantee non-disturbance of the temperature field gi-
ven in Eq. (12) by the spherical inclusion then:

T jr¼R ¼ H � R cos / ð13Þ

qrjr¼R ¼ �Ks

oT
or
jr¼R ¼ �KeH cos / ð14Þ

Also for a steady state thermal field:

rq ¼ gradðqÞ ¼ 0 ð15Þ

Heat fluxes in the radial and elevation directions are given
by:

qr ¼ �Ks

oT
or

ð16Þ

q/ ¼ �
Kp

r
oT
o/

ð17Þ

while heat flux in the azimuthal direction is identical to the
elevation direction due to symmetry. Setting the solution of
Eq. (15) to be of the form:

T ¼ f ðrÞ cos / ð18Þ

where

f ðrÞ ¼ c1r
�1þð1þ8Kp=KsÞ1=2

2 þ c2r
�1�ð1þ8Kp=KsÞ1=2

2 ð19Þ
A finite solution for temperature at r = 0 implies that
c2 = 0 in Eq. (19) and thus:

T ¼ c1r
�1þð1þ8Kp=KsÞ1=2

2 cos / ð20Þ
Using Eqs. (13) and (14), we can obtain the following
expression for the effective thermal conductivity for the
spherical inclusion in the uniform thermal field:

Ke ¼
Ks

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Kp=Ks

q
� 1

� �
ð21Þ

Having a solution for one sphere, we can insert a second,
third, and so on, and fill the space left between spheres with
smaller and smaller spheres all constituted as the original
sphere until the limit when the space is completely filled.
Hence, Eq. (21) is the final result for the effective thermal
conductivity of a material only comprising co-continuous
phases of the spherical inclusion. The above derivation is
based on the method proposed by Schulgasser [15] except
that a co-continuous structure of the sphere is assumed.

2.3. Average field approximation

The co-continuous model can also be derived using the
AFA (Average Field Approximation) method [16]. The
AFA is widely used for calculating the electrical conduc-
tance or resistance in electrical fields. In the method, the
heterogeneous material is regarded as consisting of aniso-
tropic grains surrounded by a homogenous medium and
the effective conductivity Ke is determined self-consistently
using:

X
j

P j
kj � Ke

kj þ 2Ke

¼ 0 ð22Þ

The principal axes of the grain (x, y, z) are isotropically dis-
tributed in space. For a sphere or cube, the depolarization
factors Px, Py, Pz all take the value of 1/3. If the conductiv-
ities in the principal axes of the grain, kx,ky and kz are set to
be Kp,Kp and Ks, respectively, as shown in Fig. 2c and
Fig. 3a and the homogeneous medium is assumed to be
continuous then:

1

3

Kp � Ke

Kp þ 2Ke

þ 1

3

Kp � Ke

Kp þ 2Ke

þ 1

3

Ks � Ke

Ks þ 2Ke

¼ 0 ð23Þ

Solving for Ke, gives:

Ke ¼
Kp

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Ks=Kp

q
þ 1

� �
ð24Þ

Eq. (22) was first obtained by Helsing and Helte [16], and
Eq. (24) is a specific solution to Eq. (22) with the structural
model shown in Fig. 3a.

However, the structure of the phases in the grain shown
in Fig. 3a is not co-continuous. If all of the rectangular
anisotropic grains are closely connected with the identical
adjacent sides of other grains, the interconnected grains
will become a laminated belt-shaped continuous phase with
the structure shown in Fig. 3c from the overall point of
view. This structure can be treated as if it formed an isotro-



Fig. 3. Two structural models with anisotropic inclusions: (a) dispersed inclusions, (b) elementary unit and (c) continuous inclusions.
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pic medium with conductivity Ke to be determined self-con-
sistently if the principal axis conductivities are treated as
being continuous. Again, taking Kx = Ky = Kp, and
Kz = Ks in Eq. (22):

1

3

Kp � Ke

Ke þ 2Kp

þ 1

3

Kp � Ke

Ke þ 2Kp

þ 1

3

Ks � Ke

Ke þ 2Ks

¼ 0 ð25Þ

Solving Eq. (25) gives the same earlier result for the co-con-
tinuous structure:

Ke ¼
Ks

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Kp=Ks

q
� 1

� �
ð26Þ

Therefore, as shown in Fig. 3b, the structure of co-contin-
uous model is anisotropic only on the micro-scale, and is
effectively isotropic on the macro-scale. In addition, the
co-continuous model is independent of the parallel or series
model in structure although its model equation can be ex-
pressed in terms of the parallel and series model equations.
3. A new fundamental model?

The following features of the co-continuous model mean
that could reasonably be classed as a ‘fundamental’ struc-
tural model:
0.0

1.0

0 1
Porosity

K
e/

k1 P

S

ME1

ME2

EMT

CC

P+S ME1+ME2 EMT+CC

Fig. 4. Comparison of the co-continuous (CC) model with other five basic
structural models and three composite models for a two-phase material
with a conductivity ratio (k1/k2) of 100 (see [6] for the detailed calculation
method for the composite models).
(1) The co-continuous model represents an isotropic
material with a distinctive structure where all phases
are continuous.

(2) With the addition of the co-continuous model as a
fundamental structural model, each basic model has
a corresponding model with a complementary struc-
ture, i.e., the series and parallel models, the two
Fig. 5. Thermal conductivity bounds using the ME, EMT and CC models
(k1 > k2): (a) two zone bounds [14] and (b) four zone bounds using the CC
model.
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ME models, and the EMT and the CC (co-continu-
ous) models. The EMT model is characterised by all
of the phases being mutually dispersed, while the
CC model is characterised by all of the phases being
mutually continuous.

(3) The CC model has a relation between effective con-
ductivity and volume fraction that is very distinctive
and different from the other fundamental models as
shown in Fig. 4.

It should be noted that although the CC model is shown
in Fig. 4 for the full range of volume fractions, not all the
volume fractions will correspond to realistic physical struc-
tures. Just as the ME model, which is based on spheres dis-
persed randomly in a continuous matrix, does not have
physical meaning above a dispersed phase volume fraction
of 74% (the upper limit for the packing factor of identically
sized spheres), likewise the CC structure will not necessarily
have physical meaning for volume fractions close to 0 or 1.

4. Combined structural models from co-continuous model

Based on the volume fractions of each physical struc-
ture, Wang et al. [6] proposed a method to produce new
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Fig. 6. Comparison between measured effective thermal conductivity and
the predicted bounds given by the ME1, ME2, EMT and CC models for
materials with structures in Zone 1: (a) food gel with PS balls[20] and (b)
cellular ceramics with air pores [14].
structural models using combinations of the five basic
structural models shown in Table 1. The model combining
the two ME models was proven to represent the Levy
model which has been widely used for modelling the effec-
tive thermal conductivity of meats and other porous foods
[17–19]. With the five basic models in Table 1, 26 new com-
posite structural models were obtained.

If the CC model is added as another basic model, then
31 more composite structural models can be defined, i.e.
57 composite models plus six basic models. All 63 models
are independent with different structures and different
model values. As shown in Fig. 4, the three composite
models, P + S, ME1 + ME2, and EMT + CC have differ-
ent model values though each of the three composite mod-
els represents a type of intermediate structure between the
two complementary structures.

The new composite models provide a new approach to
modelling the thermal conductivity of some heterogeneous
materials having known compositions and unknown but
fixed microstructures. For example, most biological materi-
als like bones have relatively fixed complex structures, and
their thermal conductivity can be calculated with specific
combined models. The application of the combined models
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Fig. 7. Comparison between measured effective thermal conductivity [14]
and the predicted bounds given by the ME1, ME2, EMT and CC models
for materials with structures in Zone 2: (a) dry sand in air and (b) rock in
air.
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to the prediction of conductivity for a range of engineering
materials and foods will be discussed in future work.

5. New bounds using the co-continuous model

For two-phase isotropic materials, the two ME models
give the upper and lower bounds of the effective conductiv-
ity, known as the Hashin–Shtrikman (HS) bounds [11].
Carson et al. [14] introduced the EMT model into the HS
bounds and obtained two zones with two different struc-
tures: internal porous structure and external porous struc-
ture, as shown in Fig. 5a. This approach effectively
tightened the bounds for these structures to either between
ME1 and EMT or between EMT and ME2.

With the addition of the CC model, as shown in Fig. 5b,
the two zones within the HS bounds are divided into four
zones. The different zones can be considered to comprise
different phase structures and levels of connection and con-
tact as follows.

(1) Zone 1: Internal porous structure. From the overall
point of view, phase one is continuous and phase
two is dispersed as separate near-spherical or cubic
pores (inclusions) with some of the pores being con-
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Fig. 8. Comparison between measured effective thermal conductivity and th
materials with structures in Zone 3: (a) solidified porous rock [14], (b) solidified
(d) sintered aluminium powder in air [22].
nected. Fig. 6 shows measured effective thermal con-
ductivity data for a food gel filled with polystyrene
(PS) balls and a cellular ceramics with air pores com-
pared with predictions for the ME1, ME2, CC and
EMT models. The thermal conductivity for these het-
erogeneous materials appears to fall in zone 1 consis-
tent with their known physical structure.

(2) Zone 2: External porous structure (particle bed).
From the overall point of view, phase two is continu-
ous and phase one is dispersed as separate near-spher-
ical or cubic particles (inclusions) with some of the
particles being connected or contacted. Fig. 7 shows
measured effective thermal conductivity data for two
samples of dry sands compared with predictions for
the ME1, ME2, CC and EMT models. Again, the ther-
mal conductivity of the sand beds appears to fall into
zone 2 which is consistent with their physical structure.

(3) Zone 3: In this zone each phase is self-connected/con-
tacted as an entity where the lumped phase 1 is sur-
rounded by thin belt-shaped phase 2. Fig. 8 shows
measured effective thermal conductivity data for
solidified porous rock and sandstone, and sintered
SS (stainless steel) powders and alumina powders
compared with predictions for the ME1, ME2, CC
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e predicted bounds given by the ME1, ME2, EMT and CC models for
porous sandstone [14], (c) sintered stainless steel (SS) powder in air [21] and
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and EMT models. Again, the zone 3 designation
appears consistent with the structural characteristics
for these materials.

(4) Zone 4: In zone 4 each phase is self-connected/con-
tacted as an entity where the lumped phase 2 is sur-
rounded by thin belt-shaped phase 1. Fig. 9 shows
measured effective thermal conductivity data for
nanotubes in oil and nanoparticles with surfactant
under Brownian motion in ethylene glycol (EG) com-
pared with predictions for the ME1, ME2, CC and
EMT models. Again the data appears to fall in zone
4 consistent with their structure.

Zones 3 and 4 are both physically interconnected struc-
tures, but the dominant lumped phase is different. There-
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Fig. 9. Comparison between measured effective thermal conductivity and
the predicted bounds given by the ME1, ME2, EMT and CC models for
materials with structures in Zone 4: (a) nanotubes in oil (length/
diameter > 2000, squares from [23], diamonds from [24]) (b). Nanopar-
ticles with surfactant in ethylene glycol (EG) (Brownian motion and
collision forming the connection between particles [26], d � 25 nm)[25].

polybenzoxazine (PB) filled with platelet boron nitride (BN) (diamonds,
[27]) and polystyrene (PS) filled with platelet BN (squares, [28]) and the
predicted bounds given by the ME1, ME2, EMT and CC models.
fore, the CC model does seem to provide a way to
narrow the thermal conductivity bounds based on physical
structure considerations. It is interesting to see from Fig. 10
that different volume fractions of platelet boron nitride
(BN) filled in PS and polybenzoxazine (PB) give effective
thermal conductivities in zone 3 or zone 4 which is broadly
consistent with which phase is likely to be dominant.

6. Conclusion

This paper has derived a new structural model of effective
thermal conductivity for heterogeneous materials with mul-
tiple continuous phases by using mathematical deduction, a
thermal field method, and an average field approximation.
This new model has a distinctive structure which is substan-
tially different from five conventional fundamental struc-
tural models (Series, Parallel, two forms of Maxwell–
Eucken, Effective Medium Theory). The new model pro-
vides more structural models using the combinatory method
proposed by the authors [6]. The model also provides nar-
rower bounds of the effective thermal conductivity within
the Hashin–Shtrikman bounds for heterogeneous materials
where the physical structure can be characterised.
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